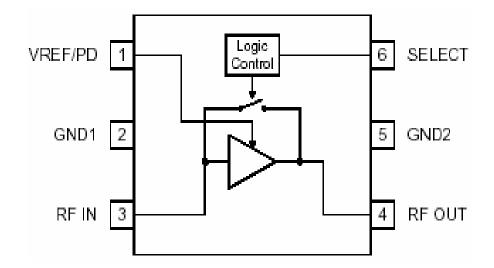


Chapter II RF/IF Components and Specifications for Receivers

RF/IF Components and Specifications for Receivers

Fixed Gain and Variable Gain Amplifiers
 IQ Demodulators
 Analog-to-Digital Converters

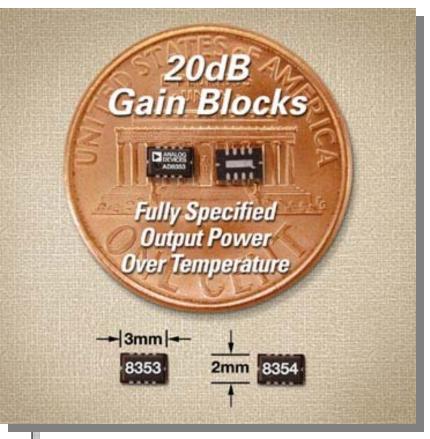


Fixed Gain and Variable Gain Amplifiers

RF Components – LNAs

- Low Noise Amplifiers (LNA) amplify very small signals and add very little noise to the signal chain. Gain = 12-18 dB typically
- Noise Figure = 1-3 dB typically
 - □ A lower noise figure reduces overall system gain and power
- LNA must sometimes amplify a weak signal in the presence of a large blocker. So LNA must also have high IP3.
- Some LNAs have a bypass circuit which is engaged when the input signal is large
- LNAs are typically internally matched and specified for a narrow band of operation
- LNAs are often integrated with a receive mixer in portable applications

AD8353 and AD8354 RF Gain Blocks


Silicon Bipolar 50 ohm input & output Gain Blocks

KEY SPECIFICATIONS

Frequency Range: 1MHz to 2.7GHz
P1dB: 9dBm / 5dBm
OIP3: 23dBm / 19dBm
NF: 5dB / 4dB
Isupply: 41mA / 23mA
Package: 3mm x 2mm 8-CSP

FEATURES

- □ Fully characterized over temp −40 to +85 °C
- Output power stable over temperature <1dB</p>
- Excellent gain stability over temp: < 1dB</p>

AD8352 – Lowest Distortion Differential Amplifier

- Ale ??~

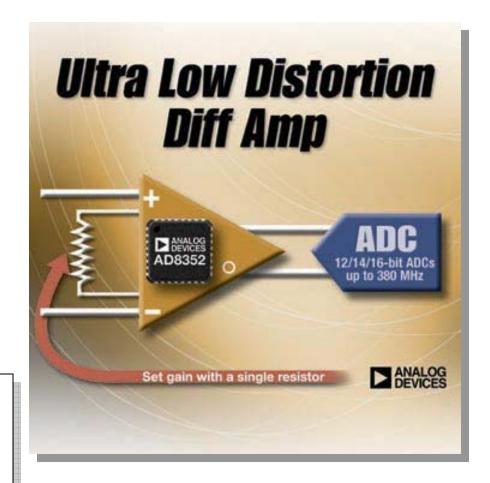
Highest Performance Differential ADC Driver on the Market

KEY SPECIFICATIONS

□Wide 3dB Bandwidth: 2GHz

Low Distortion

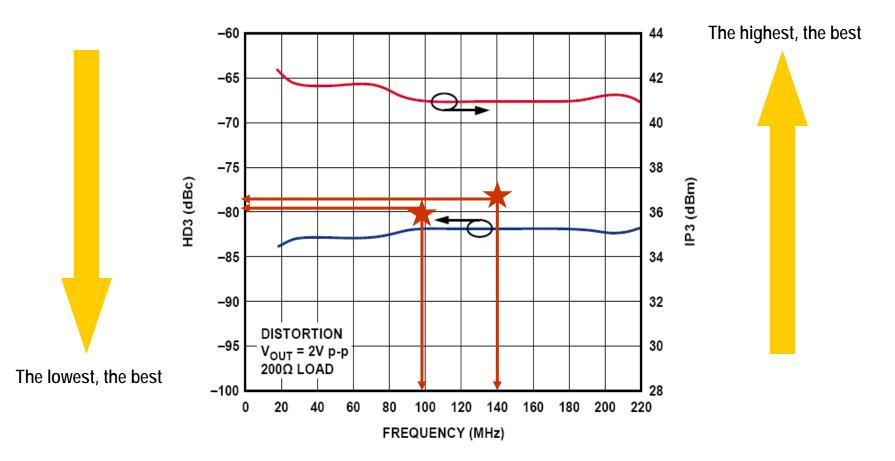
10 MHz, -86dBc HD2 -82dBc HD3
 70 MHz, -84dBc HD2 -82dBc HD3

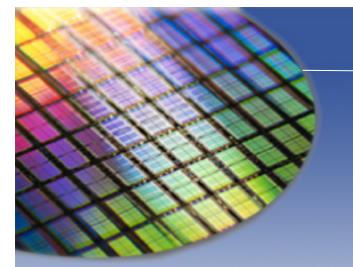

- 190Mhz, -81dBc HD2 -87dBc HD3
- High Linearity: Output IP3 +41dBm @

150MHz

□Low Input Noise: 2.6nV/√Hz (Gain 10dB)

FEATURES


- □Single Resistor sets Gain 3dB to 21dB
- Single Resistor & Capacitor distortion adjustment
- Small 3x3 mm 16-lead LFCSP


AD8352 – Superior Distortion Specs

Lower Distortion @ Higher Frequencies

- Alequer Mill

Receive VGAs

RF Components – Variable Gain Amplifiers

- In Receivers, VGAs adjust gain as received signal strength varies and present a constant signal level to the ADC
- In Transmitters, VGAs adjust for gain variations in the signal chain and set the output power to the desired level.
- Analog vs. Digital Control, Serial Control vs. Parallel Control choice often depends on control interface that is available in the system.
- □ The AGC detector may be in DSP (after an ADC) or hardware or both
 - □ a hardware AGC detector has a much faster response time
 - A receiver with DSP-based AGC can be "blinded" by a strong signal while the system is responding

AD8368 – RF/IF 800MHz Analog VGA

Features

- \Box Single ended 50 Ω input / output
- Analog Variable Gain Range: -11 to 22.5dB
- Linear-in-dB Scaling: ~35dB/V
- Integrated RMS AGC Detector
- Single +5V supply
- Small 4 x 4 mm 24-lead LFCSP

Specifications

- Wide 3dB Bandwidth: 800MHz
- High Linearity Output IP3 +34dBm
- High Output Compression P1dB: +16dBm
- Low Noise Figure: 8dB max gain

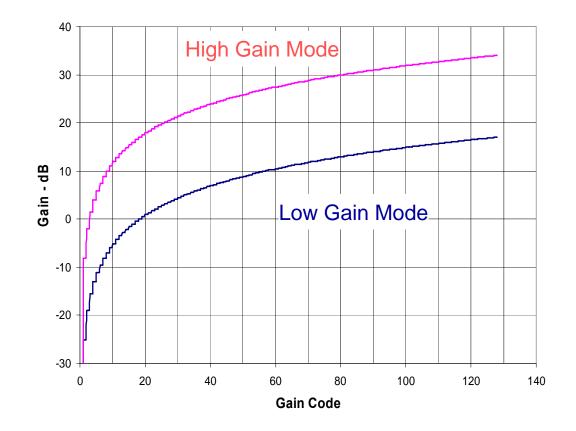
AD8370 Fine Resolution DGA

af en a

KEY SPECIFICATIONS

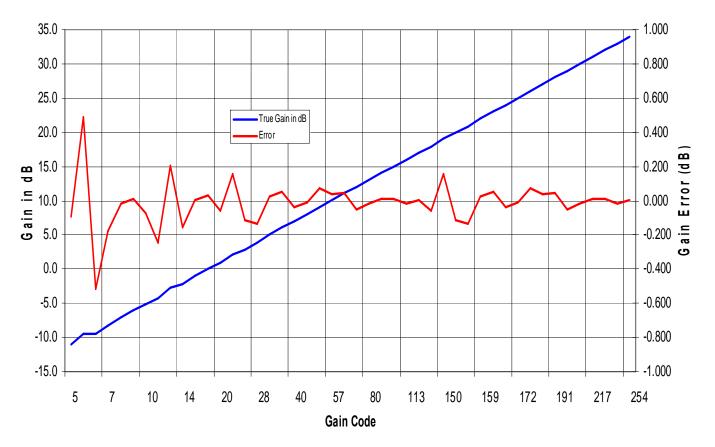
- Bandwidth 750MHz
- Differential Input and Output Impedances:
 - **□**Zin = 200 Ω , Zout = 100Ω
- P1dB 17dBm (70Mhz)
- OIP3 35 dBm (70MHz) (1K load)
- **OIP3 31dBm (70 MHz) (100 ohm load)**
- Noise Figure 7dB (max gain)
- Package 16-TSSOP

AD8370: 700 MHz Digitally Controlled VGA


FEATURES

- Serial 8-bit digital interface
- Wide gain control range
- Linear-in-dB Operation using Look Up Table
- Power-down feature

AD8370 Fine Resolution DGA: Gain Range

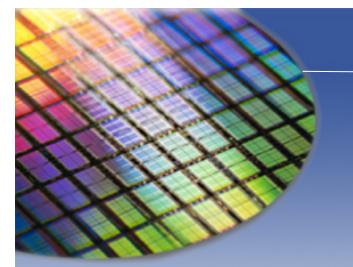

Two Operating Modes, High Gain and Low Gain, set by MSB Code
Fine step size at the higher gain settings allows precise signal leveling
Step size less than 1dB over-11 to 34dB gain range

AD8370 DGA - Linear-in-dB Gain Code Mapping

Linear-in-dB Mapping of AD8370 Gain versus Gain Code

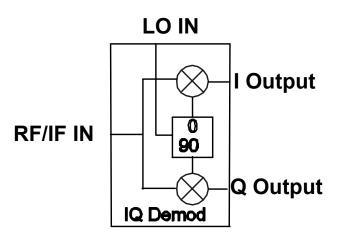
- Alequer Melle

Gain Control can be made Linear-in-dB using simple look up table

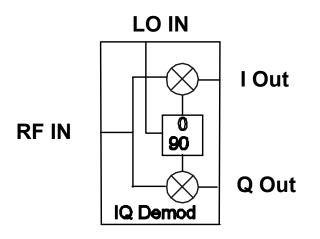


Receive Amplifiers – Fixed Gain and Variable Gain

Part No.	Control Type	Frequency Range (MHz)	Gain (dB)	Output IP3 (dBm)	Noise Figure (dB)	Comments
AD8367	Analog Variable	dc to 500	-2.5 to +42.5	27.5 (70MHz)	6.2	Single ended input/output
AD8368	Analog Variable	LF to 800	-11 to +22	34	8	Single ended input/output
AD8369	Digital Variable	LF to 600	-5 to +40	19.5 (70MHz)	7	Differential input/output
AD8370	Digital Variable	LF to 700	-11 to +17 +6 to +34	31 (70MHz)	7.4	Differential input/output
AD8350	Fixed Gain	LF-700	20	28	6.8	Differential ADC Driver
AD8351	Fixed Gain	LF-1000	26	33	9.5	Differential ADC Driver
AD8352	Fixed Gain	LF - 2000	24	41	15.5	Differential ADC Driver
AD8353	Fixed Gain	1 to 2700	20	23.6	5.3	Tx or Rx Gain Block
AD8354	Fixed Gain	1 to 2700	20	19	4.2	Tx or Rx Gain Block

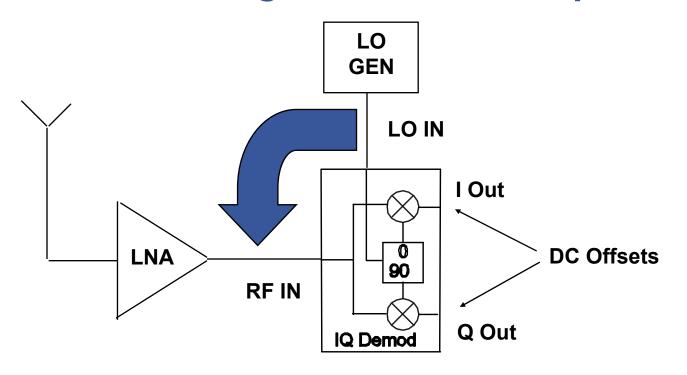

14

IQ Demodulators


RF Components – IQ Demodulators

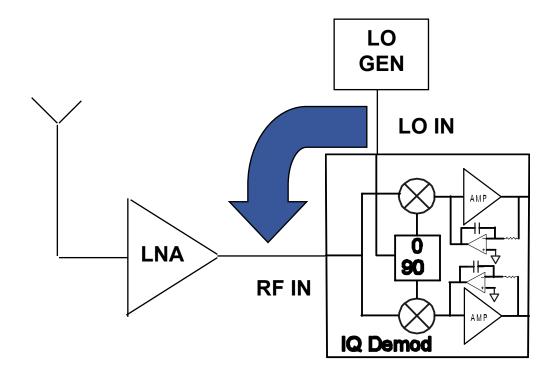
- Reverse Function to IQ Modulator IQ demodulation, extracts digital bits or symbols from a modulated carrier
- Local Oscillator (from PLL) at the same frequency as the center frequency of the carrier is split into "Quadrature" components of equal amplitude but 90 degrees out of phase
- Modulated signal is split and multiplied with Quadrature LO components (demodulation) to yield original IQ data/symbols
- **For QPSK**, digital data can be extracted using I and Q comparators
- **For QAM**, an ADC must be used to extract digital data
- Some IQ Demodulators have variable gain amplifiers at input and/or output

RF Components – IQ Demodulators


Critical IQ Demodulator Specifications

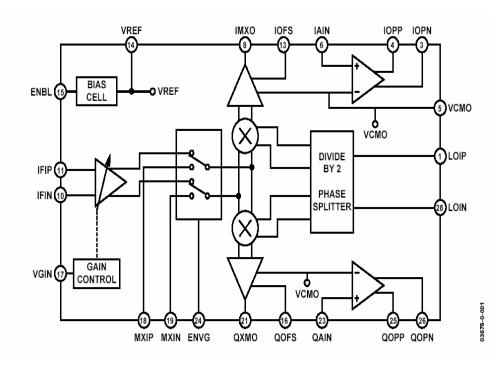
- Noise Figure determines achievable sensitivity of receiver
- Input IP3 determines maximum acceptable input signal and/or blocker
- I and Q output bandwidth determines maximum receivable bandwidth and symbol rate
- LO to RF leakage generates output dc offsets which add to I and Q outputs
- Required LO Drive level Lower LO input power results in less leakage
- IIP3 Iow IIP3 can cause blockers to intermodulate and produce distortion at the carrier frequency, reducing receiver sensitivity
- IP2 low IIP2 will cause RF Input to intermodulate with itself and
- produce unwanted dc offsets at output

LO to RF Leakage Causes Self-Mixing and DC Offset Voltages at I and Q Outputs



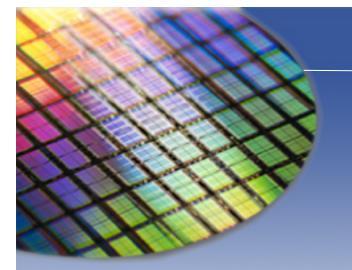
Big Problem in Direct Conversion Receivers

Solution – Monitor and Null out DC Offsets at Baseband



AD8348 I/Q Demodulator

KEY SPECIFICATIONS


Frequency Range 50MHz to 1000MHz
Accuracy
Phase accuracy 0.5°
Amplitude balance 0.25 dB
Demodulation bandwidth 75 MHz
IIP3 +28 dBm @ min gain
IIP3 -8 dBm @ max gain
Amplitude balance 0.25 dB
Noise figure 11 dB @ max gain
Package 28-lead TSSOP

FEATURES

- Integrated I/Q demodulator with IF VGA amplifier
- Linear-in-dB AGC range 44 dB
- Power-Down Mode
- Integrated DC offset-nulling

ADCs

RF Components – ADCs

Baseband ADCs (usually sold as duals) sample QAM outputs from an IQ demodulator.

- **\Box**Higher order modulation schemes \rightarrow higher resolution ADCs
- **\Box**Higher ADC resolution \rightarrow lower noise \rightarrow increased sensitivity
- **\Box**Higher symbol rates \rightarrow higher ADC sampling rates
- IF Sampling ADCs capture signal at Intermediate Frequency and mix it down into the first Nyquist band.
 - Require high input (analog) bandwidth
 - Utypically more expensive than baseband ADCs
 - eliminate down conversion analog circuitry (PLL, Mixer)

